
7. Discriminants, integers and ramification.

Any number field F can be written as Q(α) where α is an algebraic integer. Consequently,
the ring Z[α] is a subring of OF . It is of finite index by Cor.5.4. In this section we
investigate under which conditions Z[α] is equal to OF , or more generally, which primes
divide the index [OF : Z[α]]. For primes that do not divide this index, one can find the
prime ideals of OF that divide p, from the decomposition of the minimum polynomial f(T )
of α in the ring Fp[T ]. This is the content of the Factorization Lemma.

Theorem 7.1. (Factorization Lemma) Suppose f ∈ Z[T ] is an irreducible polynomial.
Let α denote a zero of f and let F = Q(α). Let p be a prime number not dividing the
index [OF : Z[α]]. Suppose that the polynomial f factors in Fp[T ] as

f(T ) = h1(T )e1 · . . . · hg(T )eg

where the polynomials h1, . . . , hg are the distinct irreducible factors of f modulo p. Then
the prime factorization of the ideal (p) in OF is given by

(p) = pe11 · . . . · pegg ,

where pi = (hi(α), p) and N(pi) = pdeg(hi).

Proof. We observe first that for any prime p we have that

Z[α]/(hi(α), p) ∼= Fp[T ]/(hi(T ), f(T ), p) ∼= Fpdeg(hi) .

Let Ii ⊂ OF be the ideal generated by p and hi(α) and let q = pdeg(hi). Then we have a
commutative diagram with exact rows:

0 −→ (p, hi(α)) −→ Ii −→ cok −→ 0y y y
0 −→ Z[α] −→ OF −→ OF /Z[α] −→ 0

It induces an exact sequence

Fq −→ OF /I −→ OF /Z[α]/cok −→ 0

The leftmost map is a ring homomorphism. Since Fq is a field, it is therefore injective.
The group in the middle is a finite dimensional Fp-vector space. Since the order of its
quotient OF /Z[α]/cok divides [OF : Z[α]], it must be 1. This shows that Ii is a prime
ideal of OF of norm q.

Therefore we have

N(
∏
i

peii ) = p
∑

i
deg(hi)ei = pn,
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where n = deg(f). On the other hand, we have∏
i

peii =
∏
i

(gi(α), p)ei ⊂ (p).

Since N((p)) = pn, the OF -ideal (p) is equal to
∏
i pi as required.

Example. Let F = Q(α) where α is a zero of the polynomial f(T ) = T 3 − T − 1. We
have seen in section 2 that the discriminant of f is −23. Since −23 is squarefree, the ring
of integers of F is just Z[α]. By the Factorization Lemma, prime numbers p factor in
OF = Z[α] just as f(T ) = T 3 − T − 1 factors in the ring Fp[T ].

Modulo 2 and 3, the polynomial f(T ) is irreducible; we conclude that the ideals
(2) and (3) in OF are prime. Modulo 5 the polynomial f(T ) has a zero and f factors
as T 3 − T − 1 = (T − 2)(T 2 + 2T − 2) in F5[T ]. We conclude that (5) = p5p

′
5 where

p5 = (5, α− 2) is a prime of norm 5 and p′5 = (5, α2 + 2α− 2) is a prime of norm 25. The
prime 7 is again prime in OF and the prime 11 splits, similar to 5, as a product of a prime
of norm 11 and of norm 121.

The following table contains this and some more factorizations of prime numbers.
Notice the only ramified prime: 23. There are also primes that split completely in F
over Q. The prime 59 is the smallest example.

Table 7.3.

p (p)

2 (2)
3 (3)
5 p5p25 p5 = (α− 2, 5) and p25 = (α2 + 2α− 2, 5)
7 (7)

11 p11p121 p11 = (α+ 5, 11) and p121 = (α2 − 5α+ 2, 11)
13 (13)
17 p17p289 p17 = (α− 5, 17) and p289 = (α2 + 5α− 10, 17)
19 p19p361 p19 = (α− 6, 19) and p361 = (α2 + 6α− 3, 19)
23 p223p

′
23 p23 = (α− 10, 23) and p′23 = (α− 3, 23)

59 p59p
′
59p
′′
59 p59 = (α− 4, 59), p′59 = (α− 13, 59) and p′′59 = (α+ 17, 59)

Proposition 7.4. Let p be a prime and let f(T ) ∈ Z[T ] be an Eisenstein polynomial for
the prime p. Let π be a zero of f and let F = Q(π) be the number field generated by π.
Then Z[π] has finite index in OF and p does not divide this index.

Proof. By Cor.5.4 the index [OF : Z[π]] is finite. Suppose that p divides the index.
Consider the Fp[T ]-ideal I = {g ∈ Fp[T ] : 1

pg(π) ∈ OF }. Note that this ideal is well

defined and that it contains f(T ) ≡ Tn (mod p). Since p divides the index [OF : Z[π]],
there exists a polynomial g(T ) ∈ Z[T ] of degree less than n and with not all its coefficients
divisible by p, such that x = 1

pg(α) ∈ OF − Z[π]. This shows that the ideal I is a proper

divisor of Tn. Therefore it contains Tn−1, which means that πn−1

p is in OF .
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Let f(T ) = Tn + an−1T
n−1 + . . . + a1T + a0 ∈ Z[T ] be the Eisenstein polynomial.

From

π
πn−1

p
+
an−1
p

πn−1 + . . .+
a1
p
π +

a0
p

= 0

it follows that π divides a0/p in the ring OF . Since a0/p is prime to p, it follows that the
OF -ideal (π, p) is equal to OF itself. But then we also have (π, p)n = OF , which is absurd,
since (π, p)n ⊂ (p). We conclude that p does not divide the index [OF : Z[π]] as required.

Example 7.5. Let p be prime number and let F = Q(ζp). The ring of integers of F
is Z[ζp].

Proof. Clearly Z[ζp] is contained in the ring of integers of Q(ζp). The minimum polynomial
of ζp is the p-th cyclotomic polynomial Φp(X) = (Xp − 1)/(X − 1) = Xp−1 + . . .+X + 1.
Indeed, the poltynomial

Φp(T + 1) =
(T + 1)p − 1

T
= T p−1 + pT p−2 + . . .+ p.

is Eisenstein at p. It follows that the trace of ζip is −1 when i 6≡ 0 (mod p), while it is
p − 1 when i ≡ 0 (mod p). Therefore the discriminant ∆(1, ζp, . . . , ζ

p−2
p ) is equal to the

determinant of the p−1 by p−1 matrix (aij) with entries aij = −1 when i+j 6≡ 2 (mod p),
while aij = p − 1 when i + j ≡ 2 (mod p). By Exercise 7.5 this determinant is equal
to ±pp−2.

It follows that the discriminant of Z[ζp] is ±pp−2. The only prime number that could
divide the index [OF [Z[ζp]] is p. However, by Proposition 7.4 the prime p it doesn’t.
Therefore OF is equal to the ring Z[ζp] as required.

Theorem 7.6. (Dedekind’s Criterion.) Suppose α is an algebraic integer with minimum
polynomial over f(T ) ∈ Z[T ]. Let F = Q(α) and let p be a prime number. Then p
divides the index [OF : Z[α]] if and only if there exists a maximal ideal m of Z[X] with
the property that p ∈ m and f(X) ∈ m2.

Proof. “if”: A maximal ideal m ⊂ Z[X] containing p and f has the form m = (φ, p) where
φ ∈ Z[X] is a a monic polynomial that is an irreducible divisor of f in Fp[X]. If f ∈ m2,
we have

f = aφ2 + bpφ+ cp2,

for certain polynomials a, b, c ∈ Z[X]. Since f ≡ aφ2 (mod p), the polynomial aφ (mod p)
has degree < deg f and the element

x =
a(α)φ(α)

p

is not in Z[α], but px is. Multiplying by x maps the Z[α]-ideal (φ(α), p) to itself. Since
(φ(α), p) is finitely generated, the element x must be integral and hence in OF . It follows
that the image of x in the quotient group OF /Z[α] has order p.
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The following diagram describes the situation. Here k denotes the finite field Z[X]/m.

0 0y y
pZ[X] −→ (φ(α), p)y y

0 −→ (f) −→ Z[X] −→ Z[α] −→ 0y y y
0 −→ (φ) −→ Fp[X] −→ k −→ 0y y

0 0

“only if”: Suppose that p divides the index of Z[α] in OF . Consider the Fp[X]-ideal
J = {h ∈ Fp[X] : 1

ph(α) ∈ OF }. The polynomial f (mod p) is contained in J , but by

assumption, it is not a generator. Let g be a generator of J and let φ ∈ Z[X] be a a monic
polynomial that is an irreducible divisor of f/g in Fp[X]. Then f is an element of the
maximal ideal m = (φ, p). So, we have f = φu + ph for certain polynomials u, h ∈ Z[X].
By construction, u modulo p is in the Fp[X]-ideal J . This gives

u(α)

p
· φ(α) = h(α), in F .

Since x = u(α)
p is in OF , it is is e zero of a polynomial of the form Xm + am−1X

m−1 +

. . .+ a1X + a0 ∈ Z[X]. It follows that we have

h(α)m + am−1φ(α)h(α)m−1 + . . .+ a0φ(α)m = 0.

Therefore φ(α) divides h(α)m in the ring Z[α]. So there exist polynomials h1, h2 ∈ Z[X]
for which we have

h(X)m = h1(X)φ(X) + h2(X)f(X), in Z[X].

This implies that φ divides hm in Fp[X]. Since φ is irreducible in Fp[X] it divides h
in Fp[X]. In other words, the polynomial h is contained in m. The relation f = φu + ph
implies that we also have f = (φ+p)u+ (h−u)p. Since φ−p is monic and congruent to φ
modulo p, we may repeat the argument with φ replaced by φ−p and h by h−u. It follows
that φ divides h− u in Fp[X]. This means that φ divides u in Fp[X], so that u ∈ m.

Since the polynomial f is equal to φu + ph and both u and h are in m = (φ, p), also
f ∈ m2, as required.

Dedekind’s criterion takes the following practical shape.
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Corollary 7.7. Let F be a number field, let α ∈ OF and let p be a prime number.
Suppose that

f = φe11 · . . . φegg ,

is the factorization of f ∈ Fp[X] in mutually distinct irreducible factors φi ∈ Fp[X] and
exponents ei ≥ 1. Then p divides the index [OF : Z[α]] if and only if for some i = 1, . . . , g
we have ei ≥ 2 and

f − φ̃1
e1 · . . . φ̃g

eg

p
≡ 0 (mod φi), in the ring Fp[X].

Here φ̃i denotes any lift of the polynomial φi to Z[X].

In order to prove the last result of this section, we introduce a slightly more general concept
of discriminant. Let K be a field and let A be an n-dimensional commutative K-algebra.
In other words A is a ring equipped with a ring homomorphism K −→ A. In ths way A
has the structure of a K-vector space, which we assume has dimension n. In section 2 we
have studied the special case K = Q and A a number field F .

On A we define the trace Tr(x) of an element x ∈ A by Tr(x) = Tr(Mx) where Mx

denotes the matrix of the multiplication-by-x-map with respect to some K-base of A. For
ω1, . . . , ωn ∈ A we define the discriminant

∆(ω1, . . . , ωn) = det(Tr(ωiωj))1≤i,j≤n.

In contrast to the situation in section 2, it may happen that ∆(ω1, . . . , ωn) is zero even if
the elements ω1, . . . , ωn constitute a K-basis for A. However, if this happens, it happens for
every basis of A. Indeed, the discriminant ∆(ω1, . . . , ωn) of a basis ω1, . . . , ωn depends on
the basis, but whether or not the discriminant is zero doesn’t. The discriminant differs by
a multiplicative factor det(M)2 where M ∈ GLn(K) is the invertible matrix transforming
one basis into the other.

We define the discriminant of A by

∆(A/K) = ∆(ω1, . . . , ωn)

for some K-basis ω1, . . . , ωn of A. It is either zero, or a well-defined element of the
group K∗/K∗2. In particular, whether or not ∆(A/K) is zero does not depend on the
choice of a K-basis of A.

Exercise 7.9 it devoted to a proof of the fact that

∆(A×B/K) = ∆(A/K)∆(B/K).

for two finite dimensional K-algebras A and B.
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Theorem 7.8. (R. Dedekind 1920) Let F be a number field and let p be a prime. Then
p is ramified in F over Q if and only if p divides the discriminant ∆F .

Proof. Let F be a number field of degree n and let p be a prime number. Consider the
field K = Fp and the n-dimensional K-algebra OF /(p). We are going to calculate the
discriminant of OF /(p) in two ways. First by reducing a Z-basis of the ring of integers OF
modulo p:

∆(OF /(p)/Fp) ≡ ∆F (mod p).

Next we write OF /(p) as a product of Fp-algebras as follows. Suppose p factors in OF as

(p) = pe11 · . . . · pegg ,

where the prime ideals pi are mutually distinct. By the Chinese Remainder Theorem we
have that

OF /(p) ∼= OF /p
e1
1 × . . .×OF /pegg

and by Exercise 7.9 we get

∆((OF /p
e1
1 )/Fp) · . . . ·∆((OF /p

eg
g )/Fp) = ∆(OF /(p)) ≡ ∆F (mod p).

By Exerc. 7.10 the discriminant ∆(Fq/Fp) is non-zero for every finite field extension Fq
of Fp. This shows that p does not divide ∆F whenever p is not ramified.

To show the converse, it suffices to show that ∆((OF /p
e)/Fp) = 0 whenever p divides

p and e > 1. Let therefore e > 1 and put A = OF /p
e. Let π ∈ p but not in p2. Then π is

a non-zero nilpotent element. We can use it as the first element in an Fp-basis e1, . . . , ek
of A. Clearly πei is nilpotent for every ei ∈ A. Since a nilpotent endomorphism has
only eigenvalues 0, we see that the first row of the matrix (Tr(eiej))1≤i,j≤n is zero. This
concludes the proof of the Theorem.

7.1. Let F = Q(α) where α be a zero of the polynomial T 3−T −1. Show that the ring of integers
of F is Z[α]. Find the factorizations in Z[α] of the primes less than 10.

7.2. Let d be a squarefree integer and let F = Q(
√
d) be a quadratic field. Show that for odd

primes p one has that p splits (is inert, ramifies respectively) in F over Q if and only if d is
a square (non-square, zero respectively) modulo p.

7.3. Let ζ5 denote a primitive 5th root of unity. Determine the decomposition into prime factors
in Q(ζ5) of the primes less than 14.

7.4. Show that the following three polynomials have the same discriminant:

T 3 − 18T − 6,

T 3 − 36T − 78,

T 3 − 54T − 150.

Let α, β and γ denote zeroes of the respective polynomials. Show that the fields Q(α), Q(β)
and Q(γ) have the same discriminants, but are not isomorphic. (Hint: the splitting behavior
of the primes is not the same.)
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7.5 Let A be an n× n matrix with entries aij in a field k.
(a) Let c ∈ k. Suppose that aij = c for all i, j. Show that the characteristic polynomial of

A is equal to Xn−1(X − nc).
(b) Suppose that aij = c whenever i 6= j, while aij = c − d when i = j. Prove that

detA = dn−1(d− nc).
7.6 Let f(X) = X3 −X2 − 6X − 8 ∈ Z[X]. Show that f is irreducible.

(a) Show that Disc(f) = −4 · 431. Show that the ring of integers of F = Q(α) admits
1, α, β = (α2 − α)/2 as a Z-basis.

(b) Show that OF has precisely three distinct ideals of index 2. Conclude that 2 splits
completely in F over Q.

(c) Show that there is no α ∈ F such that OF = Z[α]. Show that for every α ∈ OF − Z,
the prime 2 divides the index [OF : Z[α]].

7.7 Let Fq be a finite field of q elements and let Fq ⊂ Fqr an extension of degree r. Dimostrare
che ∆(Fqr/Fq) is not zero.

7.8 Letm ∈ Z>0. LetK be a field, let A be theK-algebraK[T ]/(Tm). Compute the discriminant
of A.

7.9 Let K be a field and let A and B be two finite dimensional K-algebras. Show that ∆(A×B) =
∆(A)×∆(B).

7.10 Show that for every number field F there is a prime that is ramified in F over Q.
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